سونوگرافی فراصوتی
سونوگرافی فراصوتی یکی از روش‌های تشخیص بیماری در پزشکی است. به این روش اکوگرافی، پژواک‌نگاری و صوت‌نگاری نیز گفته می‌شود. این روش بر مبنای امواج فراصوت و برای بررسی بافت‌های زیرجلدی مانند عضلات، مفاصل، تاندون‌ها و اندام‌های داخلی بدن و ضایعات آنها پی ریزی شده‌است. سونوگرافی در حاملگی نیز کاربردهای وسیعی دارد. همچنین امروزه سونوگرافی کاربردهای درمانی نیز دارد.






ریشه لغوی

کلمه سونوگرافی از لفظ لاتین sono به معنی صوت و نیز graphic به معنی شکل و ترسیم گرفته شده و ultrasound از ultra به معنی ماورا و نیز sound به معنی صوت یا صدا گرفته شده‌است.






تاریخچه

در سال ۱۸۷۶ میلادی، فرانسیس گالتون برای اولین بار پی به وجود امواج فراصوت برد. در زمان جنگ جهانی اول کشور انگلستان برای کمک به جلوگیری از غرق شدن کشتی‌هایش توسط زیردریاییهای کشور آلمان در اقیانوس آتلانتیک شمالی دستگاه کشف کننده زیردریایی‌ها به کمک امواج صوتی به نام صوت‌یاب (Sonar) ابداع کرد. این دستگاه امواج فراصوت تولید می‌کرد که در پیدا کردن مسیر کشتیها استفاده می‌شد. این تکنیک در زمان جنگ جهانی دوم تکمیل گردید و بعدها بطور گسترده‌ای در صنعت این کشور برای آشکار سازی شکافها در فلزات و سایر موارد مورد استفاده قرار می‌گرفت. از کاربرد بخصوصی که انعکاس صوت در جنگ و صنعت داشت صوت‌یاب به علم پزشکی وارد شد و تبدیل به یک وسیله تشخیصی بزرگ در علم پزشکی گردید.






سیر تحولی در رشد

نخستین دستگاه تولید کننده امواج فراصوت در پزشکی، در سال ۱۹۳۷ میلادی توسط دوسیک اختراع شد و روی مغز انسان آزمایش شد. اگر چه فراصوت در ابتدا فقط برای مشخص کردن خط وسط مغز بود، اکنون بصورت یک روش تشخیصی و درمانی مهم درآمده و پیشرفت روز به روز انواع نسلهای دستگاه‌های تولید فراصوت، تحولات عظیمی در تشخیص و درمان در علم پزشکی بوجود آورده‌است. اگرچه بر اساس آماری که در سال ۲۰۰۰ گرفته شده اولتراسوند بعلت هزینه پایین‌تر، ایمنی بیشتر، حمل و نقل آسان وامکان ارائه تصاویر زنده بیش‌ترین کاربرد را در مقایسه با سایر روشهای تصویربرداری دارد ولی بر اساس آمار به ترتیب سی. تی‌. اسکن (CT) و ام. آر. آی (MRI) و پس از آن تصویربرداری هسته‌ای به‌ویژه مقطع‌نگاری پوزیترون (PET) بیشترین کاربرد را دارند چراکه سامانه فراصوتی دارای محدودیت‌هایی نیز هست از جمله:

امواج فراصوت قابلیت عبور از استخوان را ندارند. همچنین از گاز و هوا نیز نمی‌توانند عبور کنند و بازتاب پیدا می‌کنند. بنابراین روش ایده‌آلی برای تصویربرداری از سینه، روده و معده نمی‌باشند. گازهای روده‌ای جلوی تصویربرداری از ساختمان‌های داخلی‌تر مثل پانکراس و آئورت را می‌گیرند. دیگراین‌که امواج در بافت‌ها افت کرده و به‌عنوان مثال، این مساله تصویر برداری از قلب افراد چاق را با مشکل مواجه می‌کند.






تعریف امواج فراصوت

امواج فراصوت به شکلی از انرژی از امواج مکانیکی گفته می‌شود که فرکانس آنها بالاتر از حد شنوایی انسان باشد. گوش انسان قادر است امواج بین ۲۰ هرتز تا ۲۰۰۰۰ هرتز را بشنود. هر موج (شنوایی یا فراصوت) یک آشفتگی مکانیکی در یک محیط گاز، مایع و یا جامد است که به بیرون از چشمه صوتی و با سرعتی یکنواخت و معین حرکت می‌کند. در حرکت یا گسیل موج مکانیکی، ماده منتقل نمی‌شود. اگر ارتعاش ذرات در جهت عمود بر انتشار صوت باشد، موج عرضی است که بیشتر در جامدات رخ می‌دهد و در صورتی که ارتعاش در راستای انتشار امواج باشد، موج طولی است. انتشار در بافتهای بدن به صورت امواج طولی است. از این رو در پزشکی با اینگونه امواج (بالای ۲۰٬۰۰۰ hertz) سر و کار داریم. در کاربردهای تصویر برداری پزشکی، امواج فراصوت در رنج فرکانسی ۲ تا ۲۰ مگاهرتز به کار گرفته می‌شوند. فرکانس‌های بالاتر از این میزان کاربردهای تحقیقاتی و آزمایشگاهی دارند.






روشهای تولید امواج فراصوت

روش پیزوالکتریسیته تأثیر متقابل فشار مکانیکی و نیروی الکتریکی را در یک محیط اثر پیزو الکتریسیته می‌گویند. بطور مثال بلورهایی وجود دارند که در اثر فشار مکانیکی، نیروی الکتریکی تولید می‌کنند و برعکس ایجاد اختلاف پتانسیل در دو سوی همین بلور و در همین راستا باعث فشردگی و انبساط آنها می‌شود که ادامه دادن به این فشردگی و انبساط باعث نوسان و تولید امواج می‌شود. مواد (بلورهای) دارای این ویژگی را مواد پیزو الکتریک می‌گویند. اثر پیزو الکتریسیته فقط در بلورهایی که دارای تقارن مرکزی نیستند، وجود دارد. بلور کوارتز از این دسته مواد است و اولین ماده‌ای بود که برای ایجاد امواج فراصوت از آن استفاده می‌شد که اکنون هم استفاده می‌شود.

اگر چه مواد متبلور طبیعی که دارای خاصیت پیزو الکتریسیته باشند، فراوان هستند. ولی در کاربرد امواج فراصوت در پزشکی از کریستالهایی استفاده می‌شود که سرامیکی بوده و بطور مصنوعی تهیه می‌شوند. از نمونه این نوع کریستالها، مخلوطی از زیرکونیت و تیتانیت سرب (Lead zirconat & Lead titanat) است که به شدت دارای خاصیت پیزوالکتریسیته هستند. به این مواد که واسطه‌ای برای تبدیل انرژی الکتریکی به انرژی مکانیکی و بالعکس هستند، مبدل یا ترانسدیوسر (transuscer) می‌گویند. یک ترانسدیوسر فراصوتی بکار می‌رود که علامت الکتریکی را به انرژی فراصوت تبدیل کند که به داخل بافت بدن نفوذ و انرژی فراصوت انعکاس یافته را به علامت الکتریکی تبدیل کند.







روش مگنتو استریکسیون

این خاصیت در مواد فرومغناطیس (مواد دارای دو قطبی‌های مغناطیسی کوچک بطور خود به خود با دو قطبی‌های مجاور خود همخط شوند) تحت تأثیر میدان مغناطیسی بوجود می‌آید. مواد مزبور در این میدانها تغییر طول می‌دهند و بسته به فرکانس (شمارش زنشهای کامل موج در یک ثانیه) جریان متناوب به نوسان در می‌آیند و می‌توانند امواج فراصوت تولید کنند. این مواد در پزشکی کاربرد ندارند و شدت امواج تولید شده به این روش کم است و بیشتر کاربرد آزمایشگاهی دارد.
عملکرد دستگاه‌های تصویربرداری و تشخیص با امواج فراصوت

در سیستم‌های فراصوت، پالس‌های مکانیکی با فرکانسی در محدودهٔ فراصوت، توسط پراب مخصوص منتشر می‌گردد. این پراب‌ها دارای آرایه‌ای از فرستنده‌های فرا صوت می‌باشد. بخشی از امواج منتشر شده در محیط (در اینجا بافت‌های زیستی)، با برخورد به مرزهای دو بافت با چگالی متفاوت، دچار بازتابش (اکو) می‌گردند. میزان این بازتابش وابسته به امپدانس انتشار امواج فراصوت در دو محیط می‌باشد. اساس سیستم‌های تصویربرداری آلتراسوند، تشخیص تاخیرهای سیگنال‌های دریافتی و پالس‌های ارسال شده می‌باشد.

در کاربردهای پزشکی، امواج فراصوت با فرکانس‌هایی در رنج ۱ مگاهرتز الی ۱۸ مگاهرتز، به کار گرفته می‌شود. فرکانس‌های بالا نیاز به فرستنده‌هایی با ابعاد کوچک‌تر داشته و با توجه به کوتاه تر شدن طول موج، امکان دستیابی به رزولوشن بالاتر را فراهم می‌آورد، اما با این وجود، میزان تضعیف سیگنال در محیط انتشار، با افزایش فرکانس، افزایش می‌یابد. به همین دلیل رنج فرکانس معمول ۳ الی ۵ مگاهرتز می‌باشد.

برای تشخیص سرعت سیالات، مانند سرعت جریان خون، می‌توان از اثر داپلی نیز بهره برد. با توجه به اثر دوپلر حرکت سیال موجب ایجاد شیفت فرکانسی در امواج بازتابیده شده می‌شود. میزان این شیفت فرکانس وابسته به اندازه و جهت سرعت می‌باشد.

با افزایش فرکانس، الگوی تابش فرستنده به حالت ایزوتروپیک نزدیک می‌گردد. برای متمرکز نمودن پالس‌های ارسالی در یک راستا و حتی یک نقطه خاص می‌بایست از پراب‌های آرایه فازی، استفاده نمود. این پراب‌ها شامل چندین فرستنده/گیرنده پیزوالکتریک بر روی خود می‌باشند که می‌توان به صورت یک ردیف (یک بعدی) و یا چندین ردیف (دو بعدی) کنار هم چیده شده باشند. در حالت پسیو، می‌توان چیدمان این المان‌ها را به نحوی طراحی نمود که لوب اصلی الگوی تابش آنتن در یک راستای خاص متمرکز گردد.
در حالت اکتیو فاز، با ایجاد تاخیرهای کنترل شده، در پالس‌های ارسالی توسط هر المنت، می‌توان جهت لوب اصلی را نیز بدون تغییر موقعیت مکانیکی فرستنده، تغییر داد. در فرستنده‌های آرایه فازی دو بعدی اکتیو، امکان فوکوس کردن در یک نقطه خاص نیز فراهم می‌آید. این خصوصیت امکان ایجاد تصاویر دو بعدی و سه بعدی را بدون تغییر دادن مکان پراب، فراهم می‌آورد.






کاربرد امواج فراصوت

۱. کاربرد تشخیصی (سونوگرافی)

2. بیماریهای زنان و زایمان (Gynecology) مانند بررسی قلب جنین، اندازه‌گیری قطر سر (سن جنین)، بررسی جایگاه اتصال جفت و محل ناف، تومورهای پستان. 3. بیماریهای مغز و اعصاب(Neurology) مانند بررسی تومور مغزی، خونریزی مغزی به صورت اکوگرام مغزی یا اکوانسفالوگرافی.

4. بیماریهای چشم (ophthalmology) مانند تشخیص اجسام خارجی در درون چشم، تومور عصبی، خونریزی شبکیه، اندازه‌گیری قطر چشم، فاصله عدسی از شبکیه.

5. بیماریهای کبدی (Hepatic) مانند بررسی کیست و آبسه کبدی.

6. بیماری‌های قلبی (cardiology) مانند بررسی اکوکاردیوگرافی.

۷. دندانپزشکی مانند اندازه‌گیری ضخامت بافت نرم در حفره‌های دهانی. و نیز کاربردهای درمانی آن مانند جرم گیری لثه

۸. این امواج به علت اینکه مانند تشعشعات یونیزان عمل نمی‌کنند. بنابراین برای زنان و کودکان بی‌خطر هستند. ۹. همچنین برای تصویربرداری از سینه هااستفاده می‌شود. ۱۰. رزولوشن بالایی از این روش، برای تصویربرداری از بافتهای سطحی و سلولهای نزدیک سطح پوست استفاده می‌شود. کاربرد درمانی (سونوتراپی): ۱. در فیزیوتراپی جهت کاهش درد و التهاب و همچنین انعطاف‌پذیری بافت‌ها از اولترا سوند استفاده می‌گردد.

۲. کاربرد گرمایی 11. تزریق بدون جراحت با جذب امواج فراصوت به‌وسیله بدن بخشی از انرژی آن به گرما تبدیل می‌شود. گرمای موضعی حاصل از جذب امواج فراصوت بهبودی را تسریع می‌کند. قابلیت کشسانی کلاژن (پروتئینی ارتجاعی) را افزایش می‌دهد. کشش در جوشگاه‌های زخم (scars) افزایش می‌دهد و باعث بهبود آنها می‌شود. اگر اسکار به بافتهای زیرین خود چسبیده باشد، باعث آزاد شدن آنها می‌شود. گرمای حاصل از امواج فراصوت با گرمای حاصل از گرمایش متفاوت است.







میکروماساژ مکانیکی

به هنگام فشردگی و انبساط محیط، امواج طولی فراصوتی روی بافت اثر می‌گذارند و باعث جابجایی آب میان بافتی و در نتیجه باعث کاهش ورم (تجمع آب میان بافتی در اثر ضربه به یک محل) می‌شوند.

درمان آسیب تازه و ورم:آسیب تازه معمولاً با ورم همراه است. فراصوت در بسیاری از موارد برای از بین بردن مواد دفعی در اثر ضربه و کاهش خطر چسبندگی بافتها بهم بکار می‌رود.

درمان ورم کهنه یا مزمن: فراصوت چسبندگیهایی که میان ساختمانهای مجاور ممکن است ایجاد شود را می‌شکند.






خطرات فراصوت
جستجو در ویکی‌انبار در ویکی‌انبار پرونده‌هایی دربارهٔ سونوگرافی فراصوتی موجود است.






سوختگی

اگر امواج پیوسته و در یک مکان بدون چرخش بکار روند، در بافت باعث سوختگی می‌شود و باید امواج حرکت داده شوند.






پارگی کروموزومی

استفاده دراز مدت از امواج اولتراسوند با شدت خیلی بالا پارگی در رشته دی ان ای (DNA) را نشان می‌دهد.






ایجاد حفره

یکی از عوامل کاهش انرژی امواج اولتراسوند هنگام گذشتن از بافتهای بدن ایجاد حفره یا کاویتاسیون است. همه محلولها شامل مقدار قابل ملاحظه‌ای حبابهای گاز غیر قابل دیدن هستند و دامنه بزرگ نوسانهای امواج اولتراسوند در داخل محلولها می‌تواند بر روی بافتها تغییرات بیولوژیکی ایجاد کند (پارگی در دیواره یاخته‌ها و از هم گسستن مولکولهای بزرگ).






عایق صوتی

هر وسیله‌ای برای کاهش فشار صوتی با توجه به صدای منبع و گیرنده را عایق صوتی (به انگلیسی: Soundproofing) می‌گویند.

چندین روش اساسی برای کاهش صدا وجود دارد: افزایش فاصله بین منبع و گیرنده، با استفاده از موانع سر و صدا برای منعکس یا جذب انرژی از امواج صوتی است، با استفاده از سازه‌های میرایی مانند تیغه‌های صوتی، و یا با استفاده از عایق‌های صوتی.







فواید استفاده از عایق صوتی

بهبود صدا در یک اتاق (اتاق بدون پژواک)
کاهش نشت صدا به / از اتاق مجاور و یا خارج از منزل
آکوستیک آرام بخش
کاهش سر و صدا
کنترل سر و صدا
محدود کردن سر و صدای ناخواسته


عایق صوتی می‌تواند از امواج صوتی ناخواسته غیر مستقیم مانند سرکوب بازتاب که باعث پژواک جلوگیری کند عایق صوتی می‌تواند انتقال امواج ناخواسته صدای مستقیم از منبع به شنونده غیر ارادی از طریق کاهش استفاده از فاصله و دخالت اشیاء در مسیر صدا مسیر سازد




روشهای ساده عایقکاری صوتی


1. بستن منافذ ورود و خروج هوا. هر منفذی که هوا بتواند از آن عبور کند،صدا را هم می تواندانتقال دهد. کلیه منافذ موجود در سقفها و دیوارهانظیر اطراف جعبه تقسیم های برق، کانالها و داکتها ،سیم ها و هرجایی راکه شیئی از داخل دیوار یا سقف عبور می کند با بتونه یا فوم پلی اورتان درزگیری نمایید.

2. جلوگیری از ایجاد "کانالهای عبور صدا " در دیوارها. هنگام ساخت بناهای جدید ، کلیدهای برق و دریچه های هوا را در داخل دیوارمشترک دو فضا ، پشت به پشت هم قرار ندهید.

3. اجتناب از استفاده از مصالح سخت. زیرا اینگونه مصالح ,صوت را به آسانی ازیک مکان به مکان دیگر انتقال می دهند.

4. استفاده از یک لایه انعطاف پذیرنظیر فوم منبسط شونده ، جهت جدا نمودن لوله ها از غلافها یا سوراخهایی که از آن عبور می کنند.

5. استفاده از عایق صوتی در دیوارهای ساختمانهای جدید جهت جلوگیری ازانتقال صدا بین اتاقهای مجاور. به منظور جلوگیری از انتقال صدای نامطلوب جریان سریع آب به هنگام تخلیه فلاش تانک توالت، لوله های پلاستیکی تخلیه آب را عایق بندی کنید.

6. استفاده از وسایل خانگی آرامتر، حتی اگر گرانتر از موارد مشابه پرصداتر باشند.

7. جدا نمودن تجهیزات صدادار از محلهای استراحت. استفاده از اطاقهای مجزای مجهز به عایق های صوتی می تواند ایده خوبی درطراحی منزل باشد. بکارگیری درهای مجهز به عایق بین کلیه فضاها ، به مقدار قابل ملاحظه ای از انتقال صدا در خانه جلوگیری می کند.

8. استفاده از مصالح جاذب صدا در کفها، دیوارها و سقفها. عایقهای صوتی به مانند موکت می توانند از عبور صدا جلوگیری نمایند. حتی الامکان ازبکارگیری کفپوشهای سخت، مانند سرامیک، بتن و چوب خودداری نمایید.









صوت‌شناسی

صوت‌شناسی یا آکوستیک یکی از شاخه‌های علم فیزیک است و موضوع آن بررسی موج های مکانیکی در گازها ، مایع ها و جامدها ،از جمله نوسان ها ، صدا ، فراصوت و فروصوت است.کاربردهای آکوستیک در بسیاری از جنبه های زندگی امروز دیده می شوند و ساده ترین نمونه آن صنایع صوتی و نیز کنترل نویز (مکانیکی)است.

واژه ی آکوستیک برگرفته از ریشه ی یونانی ακουστικός ، به معنای "برای و از شنوایی" و نیز از ἀκουστός به معنای قابل شنیدن است.






تاریخچه

از نظر اهمیتی که آکوستیک یا علم صدا دارا می‌باشد می‌توان انتظار داشت که این موضوع در تاریخ علوم فیزیک جزو مطالب اساسی به شمار رفته باشد، در صورتی که چنین چیزی نیست، زیرا در قبال تاریخ سایر علوم، تاریخ آکوستیک قسمت از قلم افتاده و مهجوری بیش نیست. یکی از دلایل این مهجوریت تاریخی این است که نظریه اساسی اصلی راجع به انتشار و اخذ صوت از زمانهای بسیار قدیم در تحولات فکر بشری پیدا شده و اسلوب این فکر همان است که امروزه مورد قبول ماست.






تولید صوت

وقتی که به یک جسم جامد ضربه وارد می‌سازیم، تولید صدا می‌کند. تحت بعضی از شرایط صدای حاصل، بگوش انسان خوش آیند و مطبوع است و این در واقع اساس پیدایش علم موسیقی است که سالیان دراز قبل از تاریخ ضبط صوت، موجود بوده است، اما موسیقی، قرنها قبل از نظر علمی مورد تحقیق قرار گیرد، جزو صنایع ظریفه محسوب می‌گردید. این مطلب مورد قبول عموم است که اولین فیلسوف یونانی که مبنای موسیقی را برسی نموده است. فیثاغورث می‌باشد که ۶ قرن قبل از میلاد زندگی می‌کرده است.
4:34 pm
بلوک منبع تغذیه و شارژینگ
منبع تغذیه موبایل واحدی است که ولتاژ لازم بلوک‌های دیگر را از طریق باتری فراهم می‌کند. واحد منبع تغذیه از رگولاتورهای مختلفی تشکیل شده و داخل یک بسته بندی قرار دارد. این بسته بندی به آی‌سی CCONT موسوم است. واحد شارژینگ نیز مجموعه قطعاتی است که از طریق ولتاژ دریافتی از آداپتور، باتری را شارژ می‌کند. معمولاً این واحد نیز از یک آی‌سی به نام CHAPS تشکیل شده‌است. آی‌سی CCONT و CHAPS با یکدیگر در ارتباط هستند، زیرا آی‌سی CHAPS برای شارژ باتری بایستی از CCONT کنترل شود.





COBBA
در بلوک AF از یک آی‌سی به نام COBBA استفاده می‌شود. این آی‌سی مبدل سیگنال‌های آنالوگ به دیجیتال و برعکس است. امواج دریافتی آنتن بعد از این که توسط آی‌سی RF دمودولاسیون شدند با خطوط RX وارد آی‌سی COBBA در واحد AF می‌شوند. این آی‌سی ابتدا سیگنال‌های دریافتی از RF را توسط خطوط ارتباطی PCM به بلوک MCU می‌دهد. در این بلوک اطلاعات از طریق آی‌سی CPU روی حافظه موقت گوشی ریخته می‌شود. سپس آی‌سی COBBA دوباره از طریق همان خطوط ارتباطی، اطلاعات را از روی حافظه موقت خوانده و به سیگنال آنالوگ تبدیل می‌کند که از طریق بلندگو قابل استفاده خواهد شد. به همین طریق برای اطلاعاتی که بایستی از موبایل خارج شود، صدایی که توسط میکروفون دریافت می‌شود، به صورت سیگنال آنالوگ است. این سیگنال بعد از ورود به آی‌سی COBBA، تبدیل به صدای دیجیتال دیجیتال می‌شود. این صدا از طریق خطوط PCM به واحد MCU منتقل می‌شود تا در حافظه موقت نگهداری شود و به محض کانال‌دار شدن موبایل تمامی اطلاعات قسمت میکروفون از طریق واحد RF به BTS ارسال می‌شود.




PCM

PCM یکی از روش‌های انتقال اطلاعات بین دو واحد است. این واحد خطوط ارتباطی بین آی‌سی COBBA و CPU بوده و در نقشه‌ها از آن به عنوان خطوط PCM نام برده می‌شود. این انتقال به صورت کد شده انجام می‌شود که انواع آن RX و TX است.

1- خطوط PCM TX مربوط به مسیر جابجایی اطلاعات دیجیتال میکروفون به حافظه؛

2- خطوط PCM RX مربوط به مسیر انتقال اطلاعات دیجیتال دریافتی به حافظه.

خطوط PCM TX و PCM RX در نقشه‌های گوشی‌ها بین آی سی COBBA و آی‌سی CPU مشخص می‌باشد.
آنالوگ و دیجیتال
سیگنال آنالوگ به آن دسته از سیگنال‌هایی اطلاق می‌شود که مقدار ولتاژ آن در لحظات مختلف در حال تغییر باشد؛ به این صورت که در یک لحظه ۲ ولت، لحظه‌ای دیگر ۳ ولت و به همین صورت در حال تغییر باشد. این سیگنال می‌تواند توسط یک میکروفون ساخته شود. ماهیت تغییرات سیگنال آنالوگ، به عنوان مثال صدا، به مولد آن ،که می‌تواند صدای یک انسان باشد، بستگی دارد. سیگنال‌های آنالوگ را در آی‌سی‌های حافظه نمی‌توان ذخیره کرد. همچنین در انتقال آن نیز امکان نویز پذیری بالا است. در مدارات منطقی و کنترلرها اگر بخواهیم یک سیگنال آنالوگ را وارد کنیم باید آن را به دیجیتال تبدیل کنیم. دیجیتال یعنی صفر و یک، در حقیقت در سیستم دیجیتال تغییرات در لحظات مختلف وجود دارد، ولی همیشه این تغییرات به صورت صفر و یک است. منظور از صفر و یک، دو سطح منطقی است. ما می‌توانیم صفر منطقی را به سطح ولتاژ صفر ولت و یک منطقی را به سطح ولتاژ پنج ولت تعریف کنیم. در این صورت سطوح ولتاژ دیگری به غیر صفر و پنج ولت نخواهیم داشت. مزیت دیجیتال در ذخیره سازی آن توسط آی‌سی حافظه و همچنین انتقال راحت آن با کیفیت خوب است. برای تبدیل سیگنال آنالوگ به دیجیتال روش‌های مختلفی وجود دارد. اصول تبدیل آن به این صورت است که ابتدا از آنالوگ در لحظات مشخص نمونه‌برداری می‌کنیم، سپس نمونه‌ها توسط یک مبدل به دیجیتال تبدیل می‌شود. هر چه تعداد نمونه گیری‌ها از سیگنال آنالوگ بیشتر باشد، ما توانسته‌ایم آنالوگ را با کیفیت بهتری به دیجیتال تبدیل کنیم. فقط بایستی این مطلب را در نظر بگیریم که افزایش تعداد نمونه برداری‌ها باعث افزایش حجم تبدیل خواهد شد. طریقه تبدیل آنالوگ به دیجیتال لازم است در تبدیل مجموع ارزش بیت‌هایی که یک هستند، برابر با مقدار ولتاژ آنالوگ شود. بیت‌های به دست آمده را می‌توان توسط سلول‌های حافظهٔ موقت یا دائم ذخیره کرد تا در زمان‌های لازم از آن استفاده کنیم. این عمل در موبایل انجام می‌شود و صدای میکروفون ابتدا به دیجیتال تبدیل شده، سپس در حافظه موقت موبایل قرار می‌گیرد تا در لحظه داشتن کانال ترافیکی یک جا بیت‌ها را ارسال کنیم. این باعث می‌شود که در لحظاتی که BTS کانالی را از موبایل می‌گیرد، صدای مشترک در موبایل ذخیره شده و به صورت منقطع به مخاطبین نرسد. برای صدای دریافتی نیز این عمل انجام می‌شود، فقط در آن حالت باید آی‌سی COBBA مجهز به یک مبدل D to A شود تا بتوانیم اطلاعا دیجیتال دریافتی از BTS را به آنالوگ تبدیل کنیم. به تبدیل آنالوگ به دیجیتال باشد. هر چه فرکانس سیگنال آنالوگ بیشتر باشد، لازم است تعداد نمونه برداری‌ها افزایش یابد تا امکان تبدیل تغییرات سریع آن را داشته باشیم.





بلند گو
Earpiece یا COBBA زمانی که تبدیلات را انجام داد باید خروجی آنالوگ را به بلند گو بدهد. معمولاً در بعضی از بردهای موبایل قبل از اتصال سیگنال COBBA به بلند گو از دو مقاومت محدود کننده به صورت سری با بلند گوهای موبایل استفاده می‌کنند.




میکروفن
Speaker برای دریافت صدا و انجام تبدیلات و ارسال، از یک میکروفون خازنی در موبایل استفاده می‌شود. میکروفون خازنی معمولاً از یک صفحه کریستالی است که به صدا حساس است و همراه آن یک ترانزیستور تقویت کننده وجود دارد. کیفیت دریافت میکروفون خازنی در مقایسه با انواع دیگر میکروفون‌ها بسیار زیاد است که یکی از دلایل آن داشتن ترانزیستور تقویت کننده داخل میکروفون است. ترانزیستور میکروفون جهت تقویت نیاز به ولتاژ DC دارد. این ولتاژ را بایستی توسط قطعاتی در برد موبایل فراهم کنیم. هرچه سطح ولتاژ را افزایش دهیم، حساسیت و قدرت دریافتی میکروفون بیشتر می‌شود. در بعضی از موبایل‌ها این ولتاژ توسط آی سی COBBA ساخته می‌شود و قطعه خارجی دیگری نداریم، ولی در بعضی از موبایل‌ها این ولتاژ توسط یک ترانزیستور در کنار آی سی COBBA فراهم می‌شود. البته راه اندازی ترانزیستر از طریق آی سی COBBA است.




اثرات امواج تلفن همراه بر سلامت انسان
نگرانی‌ها دربارهٔ اثرات امواج تلفن همراه بر سلامت انسان با رشد بیش از حد تلفن‌های بی‌سیم همراه (۲ میلیارد در آگوست ۲۰۰۵) بیشتر شده‌است. این نگرانی‌ها به خاطر این هستند که تلفن همراه از خود امواج الکترومغناطیسی در مقیاس مایکروویو ساطع می‌کند.





اولین تلفن همراه در ایران

اولین تلفن همراه موجود در ایران که شکل و شمایلی به تلفن‌های همراه امروزی ندارد، متعلق به ناصرالدین شاه بود.

شکل و شمایل این تلفن همراه که در سال ۱۲۳۰ تولید شده است، به تلفن‌های همراه امروزی شباهتی ندارد. این تلفن همراه در سفرها همراه ناصرالدین شاه بوده و در زمان نیاز به کابل‌های کشیده شده بین راه وصل و با مخاطب مورد نظر تماس تلفنی برقرار می‌شده است این تلفن دارای راهنمای فارسی بوده و ساخت کارخانه «البیس» شهر زوریخ می‌باشد.
ساعت : 4:34 pm | نویسنده : admin | اتو شارژ | مطلب قبلی
اتو شارژ | next page | next page